ForceFieldNebFromEndpointsMaker

class atomate2.forcefields.neb.ForceFieldNebFromEndpointsMaker(name='Forcefield NEB from endpoints', calculator_kwargs=<factory>, ionic_step_data=('energy', 'forces', 'magmoms', 'stress', 'mol_or_struct'), store_trajectory=StoreTrajectoryOption.NO, tags=None, neb_kwargs=<factory>, fix_symmetry=False, symprec=0.01, steps=500, relax_kwargs=<factory>, optimizer_kwargs=<factory>, traj_file=None, traj_file_fmt='ase', traj_interval=1, neb_doc_kwargs=<factory>, endpoint_relax_maker=None, force_field_name=MLFF.Forcefield, task_document_kwargs=<factory>)[source]

Bases: ForceFieldMixin, AseNebFromEndpointsMaker

Run NEB with an ML forcefield using ASE.

Parameters:
  • name (str)

  • calculator_kwargs (dict)

  • ionic_step_data (tuple[str, ...] | None)

  • store_trajectory (StoreTrajectoryOption)

  • tags (list[str] | None)

  • neb_kwargs (dict)

  • fix_symmetry (bool)

  • symprec (float | None)

  • steps (int)

  • relax_kwargs (dict)

  • optimizer_kwargs (dict)

  • traj_file (str | None)

  • traj_file_fmt (Literal['pmg', 'ase', 'xdatcar'])

  • traj_interval (int)

  • neb_doc_kwargs (dict)

  • endpoint_relax_maker (Maker | None)

  • force_field_name (str | MLFF)

  • task_document_kwargs (dict)

make(images, prev_dir=None)[source]

Perform NEB with MLFFs on a set of images.

Parameters:
  • images (list of pymatgen .Structure) – Structures to perform NEB on.

  • prev_dir (str or Path or None) – A previous calculation directory to copy output files from. Unused, just added to match the method signature of other makers.

Return type:

NebResult

classmethod from_force_field_name(force_field_name, **kwargs)[source]

Create a force field NEB job from its name.

Parameters:
  • force_field_name (str or MLFF) – The name of the forcefield. Should be a valid MLFF member.

  • **kwargs – kwargs to pass to ForceFieldNebFromEndpointsMaker.

Return type:

Self