Source code for mp_api.client.routes.materials.thermo

from __future__ import annotations

import warnings
from collections import defaultdict

import numpy as np
from emmet.core.thermo import ThermoDoc, ThermoType
from pymatgen.analysis.phase_diagram import PhaseDiagram
from pymatgen.core import Element

from mp_api.client.core import BaseRester
from mp_api.client.core.utils import validate_ids


[docs] class ThermoRester(BaseRester[ThermoDoc]): suffix = "materials/thermo" document_model = ThermoDoc # type: ignore supports_versions = True primary_key = "thermo_id"
[docs] def search_thermo_docs(self, *args, **kwargs): # pragma: no cover """Deprecated.""" warnings.warn( "MPRester.thermo.search_thermo_docs is deprecated. " "Please use MPRester.thermo.search instead.", DeprecationWarning, stacklevel=2, ) return self.search(*args, **kwargs)
[docs] def search( self, chemsys: str | list[str] | None = None, energy_above_hull: tuple[float, float] | None = None, equilibrium_reaction_energy: tuple[float, float] | None = None, formation_energy: tuple[float, float] | None = None, formula: str | list[str] | None = None, is_stable: bool | None = None, material_ids: list[str] | None = None, num_elements: tuple[int, int] | None = None, thermo_ids: list[str] | None = None, thermo_types: list[ThermoType | str] | None = None, total_energy: tuple[float, float] | None = None, uncorrected_energy: tuple[float, float] | None = None, num_chunks: int | None = None, chunk_size: int = 1000, all_fields: bool = True, fields: list[str] | None = None, ): """Query core material docs using a variety of search criteria. Arguments: chemsys (str, List[str]): A chemical system or list of chemical systems (e.g., Li-Fe-O, Si-*, [Si-O, Li-Fe-P]). energy_above_hull (Tuple[float,float]): Minimum and maximum energy above the hull in eV/atom to consider. equilibrium_reaction_energy (Tuple[float,float]): Minimum and maximum equilibrium reaction energy in eV/atom to consider. formation_energy (Tuple[float,float]): Minimum and maximum formation energy in eV/atom to consider. formula (str, List[str]): A formula including anonymized formula or wild cards (e.g., Fe2O3, ABO3, Si*). A list of chemical formulas can also be passed (e.g., [Fe2O3, ABO3]). is_stable (bool): Whether the material is stable. material_ids (List[str]): List of Materials Project IDs to return data for. thermo_ids (List[str]): List of thermo IDs to return data for. This is a combination of the Materials Project ID and thermo type (e.g. mp-149_GGA_GGA+U). thermo_types (List[ThermoType]): List of thermo types to return data for (e.g. ThermoType.GGA_GGA_U). num_elements (Tuple[int,int]): Minimum and maximum number of elements in the material to consider. total_energy (Tuple[float,float]): Minimum and maximum corrected total energy in eV/atom to consider. uncorrected_energy (Tuple[float,float]): Minimum and maximum uncorrected total energy in eV/atom to consider. num_chunks (int): Maximum number of chunks of data to yield. None will yield all possible. chunk_size (int): Number of data entries per chunk. all_fields (bool): Whether to return all fields in the document. Defaults to True. fields (List[str]): List of fields in ThermoDoc to return data for. Default is material_id and last_updated if all_fields is False. Returns: ([ThermoDoc]) List of thermo documents """ query_params = defaultdict(dict) # type: dict if formula: if isinstance(formula, str): formula = [formula] query_params.update({"formula": ",".join(formula)}) if chemsys: if isinstance(chemsys, str): chemsys = [chemsys] query_params.update({"chemsys": ",".join(chemsys)}) if material_ids: query_params.update({"material_ids": ",".join(validate_ids(material_ids))}) if thermo_ids: query_params.update({"thermo_ids": ",".join(validate_ids(thermo_ids))}) if thermo_types: t_types = {t if isinstance(t, str) else t.value for t in thermo_types} valid_types = {*map(str, ThermoType.__members__.values())} if invalid_types := t_types - valid_types: raise ValueError( f"Invalid thermo type(s) passed: {invalid_types}, valid types are: {valid_types}" ) query_params.update({"thermo_types": ",".join(t_types)}) if num_elements: if isinstance(num_elements, int): num_elements = (num_elements, num_elements) query_params.update( {"nelements_min": num_elements[0], "nelements_max": num_elements[1]} ) if is_stable is not None: query_params.update({"is_stable": is_stable}) name_dict = { "total_energy": "energy_per_atom", "formation_energy": "formation_energy_per_atom", "energy_above_hull": "energy_above_hull", "equilibrium_reaction_energy": "equilibrium_reaction_energy_per_atom", "uncorrected_energy": "uncorrected_energy_per_atom", } for param, value in locals().items(): if "energy" in param and value: query_params.update( { f"{name_dict[param]}_min": value[0], f"{name_dict[param]}_max": value[1], } ) query_params = { entry: query_params[entry] for entry in query_params if query_params[entry] is not None } return super()._search( num_chunks=num_chunks, chunk_size=chunk_size, all_fields=all_fields, fields=fields, **query_params, )
[docs] def get_phase_diagram_from_chemsys( self, chemsys: str, thermo_type: ThermoType | str ) -> PhaseDiagram: """Get a pre-computed phase diagram for a given chemsys. Arguments: chemsys (str): A chemical system (e.g. Li-Fe-O) thermo_type (ThermoType): The thermo type for the phase diagram. Defaults to ThermoType.GGA_GGA_U. Returns: phase_diagram (PhaseDiagram): Pymatgen phase diagram object. """ t_type = thermo_type if isinstance(thermo_type, str) else thermo_type.value valid_types = {*map(str, ThermoType.__members__.values())} if invalid_types := {t_type} - valid_types: raise ValueError( f"Invalid thermo type(s) passed: {invalid_types}, valid types are: {valid_types}" ) sorted_chemsys = "-".join(sorted(chemsys.split("-"))) phase_diagram_id = f"{sorted_chemsys}_{t_type}" response = self._query_resource( fields=["phase_diagram"], suburl=f"phase_diagram/{phase_diagram_id}", use_document_model=False, num_chunks=1, chunk_size=1, ).get("data", [{}]) pd = response[0].get("phase_diagram", None) # Ensure el_ref keys are Element objects for PDPlotter. # Ensure qhull_data is a numpy array # This should be fixed in pymatgen if pd: for key, entry in list(pd.el_refs.items()): if not isinstance(key, str): break pd.el_refs[Element(str(key))] = entry pd.el_refs.pop(key) if isinstance(pd.qhull_data, list): pd.qhull_data = np.array(pd.qhull_data) return pd # type: ignore