Source code for mp_api.client.routes.materials.tasks
from __future__ import annotations
import warnings
from emmet.core.tasks import TaskDoc
from mp_api.client.core import BaseRester, MPRestError
from mp_api.client.core.utils import validate_ids
[docs]
class TaskRester(BaseRester[TaskDoc]):
suffix = "materials/tasks"
document_model = TaskDoc # type: ignore
primary_key = "task_id"
[docs]
def get_trajectory(self, task_id):
"""Returns a Trajectory object containing the geometry of the
material throughout a calculation. This is most useful for
observing how a material relaxes during a geometry optimization.
:param task_id: A specified task_id
:return: List of trajectory objects
"""
traj_data = self._query_resource_data(
suburl=f"trajectory/{task_id}/", use_document_model=False
)[0].get("trajectories", None)
if traj_data is None:
raise MPRestError(f"No trajectory data for {task_id} found")
return traj_data
[docs]
def search_task_docs(self, *args, **kwargs): # pragma: no cover
"""Deprecated."""
warnings.warn(
"MPRester.tasks.search_task_docs is deprecated. "
"Please use MPRester.tasks.search instead.",
DeprecationWarning,
stacklevel=2,
)
return self.search(*args, **kwargs)
[docs]
def search(
self,
task_ids: list[str] | None = None,
chemsys: str | list[str] | None = None,
elements: list[str] | None = None,
exclude_elements: list[str] | None = None,
formula: str | list[str] | None = None,
num_chunks: int | None = None,
chunk_size: int = 1000,
all_fields: bool = True,
fields: list[str] | None = None,
):
"""Query core task docs using a variety of search criteria.
Arguments:
task_ids (List[str]): List of Materials Project IDs to return data for.
chemsys (str, List[str]): A chemical system or list of chemical systems
(e.g., Li-Fe-O, Si-*, [Si-O, Li-Fe-P]).
elements (List[str]): A list of elements.
exclude_elements (List[str]): A list of elements to exclude.
formula (str, List[str]): A formula including anonymized formula
or wild cards (e.g., Fe2O3, ABO3, Si*). A list of chemical formulas can also be passed
(e.g., [Fe2O3, ABO3]).
num_chunks (int): Maximum number of chunks of data to yield. None will yield all possible.
chunk_size (int): Number of data entries per chunk. Max size is 100.
all_fields (bool): Whether to return all fields in the document. Defaults to True.
fields (List[str]): List of fields in TaskDoc to return data for.
Default is material_id, last_updated, and formula_pretty if all_fields is False.
Returns:
([TaskDoc]) List of task documents
"""
query_params = {} # type: dict
if task_ids:
query_params.update({"task_ids": ",".join(validate_ids(task_ids))})
if formula:
query_params.update({"formula": formula})
if elements:
query_params.update({"elements": ",".join(elements)})
if exclude_elements:
query_params.update({"exclude_elements": ",".join(exclude_elements)})
if chemsys:
if isinstance(chemsys, str):
chemsys = [chemsys]
query_params.update({"chemsys": ",".join(chemsys)})
return super()._search(
num_chunks=num_chunks,
chunk_size=chunk_size,
all_fields=all_fields,
fields=fields,
**query_params,
)